

# High-voltage and high-sensitivity unipolar Hall switch

#### 1. Introduction

SL44E unipolar Hall effect switch, designed with bipolar semiconductor process, includes Hall voltage generator, voltage regulator that can operate at power supply voltage of 3.8 to 40V, temperature compensation circuit, small signal amplifier, Schmitt trigger and open collector output. This sensor is designed for south pole response. When the magnetic flux density (B) is greater than the operating point Bop, the output is low level, and the output remains unchanged until the magnetic flux (B) is less than the release point Brp, the output is high level. SL44E provides a variety of packages, including TO92 S, SOT23 -3L, and the packaging is RoHS compliant.

#### 2. Feature

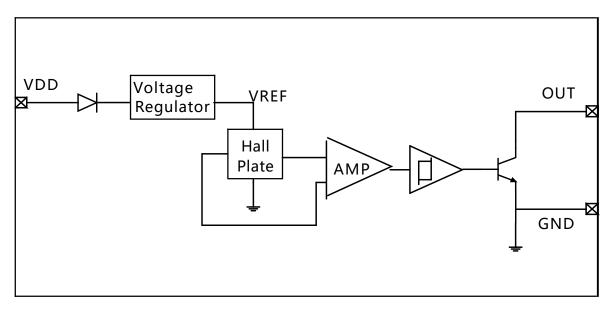
- Micro structure
- High sensitivity: 75/55Gauss (Typical Value)

# 3. Typical Applications

• Flow Sensors

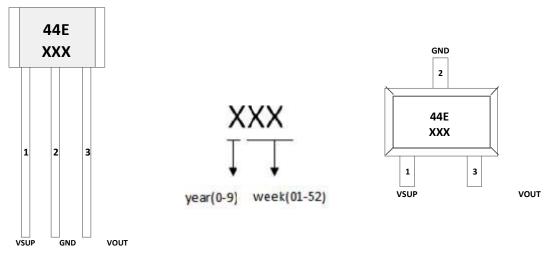
Position Sensors

Speed Sensors


Distance Sensors

- Brushless motor commutation
- Wide voltage range: 3.8 V to 40 V
- ESD Performance can reach ±4 kV
- Operating temperature range from -40°C to 125℃
- Open collector output

#### 4. Functional Block Diagram


The SL44E is designed using bipolar technology and includes an on-chip Hall element voltage generator, a voltage regulator that can operate at a supply voltage from 3.8 to 40V, a temperature compensation circuit, a small signal amplifier, a Schmitt trigger, and an open collector output.





SL44E Functional Block Diagram

## 5. Pin Description



TO92S SOT23-3L

## 6. Ordering Information

| Serial number | Package  | Boxing     | Work Environment, TA |
|---------------|----------|------------|----------------------|
| SL44E-9       | TO92S    | 1000 /Bag  | -40℃ to 125℃         |
| SL44E-3       | SOT23-3L | 3000 /Roll | -40℃ to 125℃         |



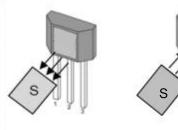
## 7. Pin information

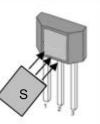
| SOT23-3L Pin number | TO92S Pin number | Name             | Function                                                |
|---------------------|------------------|------------------|---------------------------------------------------------|
| 1                   | 1                | V <sub>SUP</sub> | Power                                                   |
| 2                   | 2                | G <sub>ND</sub>  | Ground                                                  |
| 3                   | 3                | Vout             | Open collector output, need to connect pull-up resistor |

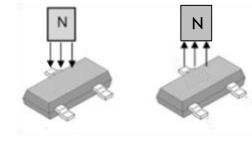
8. Absolute Maximum Ratings The absolute maximum ratings are the extreme values that the chip can withstand. If the value is exceeded, the chip may be permanently damaged.

| Parameter                   | Symbol            | Min  | Мах | Unit |
|-----------------------------|-------------------|------|-----|------|
| Supply voltage              | V <sub>DD</sub>   | -0.3 | 60  | V    |
| Output Current              | I <sub>sink</sub> | 0    | 40  | mA   |
| Output voltage              | Vout              | -0.5 | 60  | V    |
| Operating temperature range | Ta                | -40  | 125 | °C   |
| Storage temperature range   | Ts                | -50  | 165 | °C   |




## 9. Electromagnetic properties(Ta=25°C, VSUP=5V)


| Symbol           | Parameter                 | Test conditions                 | Min | Тур | Max | Unit  |  |
|------------------|---------------------------|---------------------------------|-----|-----|-----|-------|--|
|                  | Electrical properties     |                                 |     |     |     |       |  |
| V <sub>SUP</sub> | Supply voltage            |                                 | 3.8 |     | 40  | V     |  |
| I <sub>SUP</sub> | Working current           | V <sub>SUP</sub> =5V            |     | 6   | 9   | mA    |  |
| I <sub>le</sub>  | Output leakage current    |                                 |     |     | 10  | uA    |  |
| V <sub>sat</sub> | Output saturation voltage | I <sub>out</sub> =20mA,On state |     |     | 0.4 | V     |  |
| Isink            | Output current sink       |                                 |     |     | 30  | mA    |  |
| Tr               | Output rise time          | CL=20pF                         |     |     | 1   | us    |  |
| T <sub>f</sub>   | Output Fall Time          | CL=20pF                         |     |     | 1.5 | us    |  |
|                  | Magnetic properties       |                                 |     |     |     |       |  |
| Bop              | Working point             | CL=20pF                         | 60  | 75  | 90  | Gauss |  |
| B <sub>rp</sub>  | Release Point             |                                 | 40  | 55  | 70  | Gauss |  |
| B <sub>hys</sub> | Hysteresis                |                                 | 10  | 20  | 40  | Gauss |  |


#### 10. Magnetoelectric conversion characteristics

TO92S Package, When the south pole is close to the marked side, the output is low level, and when it is far away, the output is high level;

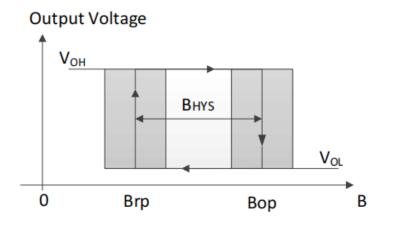
SOT23-3L Package, When the north pole is close to the marked side, the output is low level, and when it is far away, the output is high level.





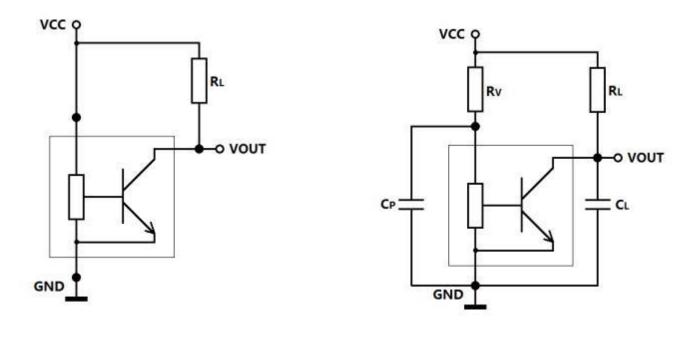


Vout=High level


Vout=Low level

Vout=Low level

Vout=Low level



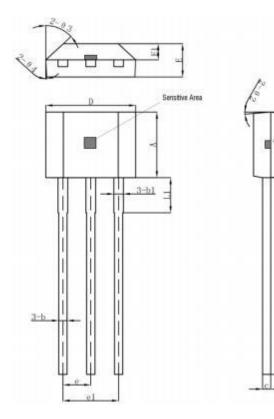

#### 11. Output Status



#### **12. Application Circuit**

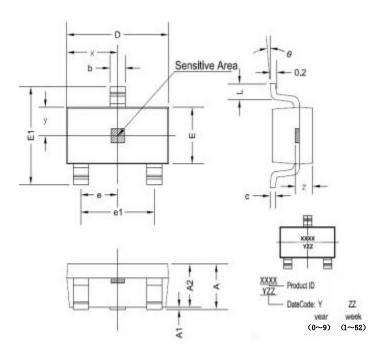
The typical application circuit is shown in the following figure, Application Circuit 1, where RL = 4.7K $\Omega$ . For applications with interference or radiated interference on the power supply line, it is recommended to place the series resistor RV and the two capacitors CP and CL as close to the sensor as possible, as shown in the following figure, Application Circuit 2, among RV =100  $\Omega$ , CP =4.7K $\Omega$ , RL =4.7K $\Omega$ , CL =1nF.




**Application Circuit 1** 

**Application Circuit 2** 




# 13. Dimensions

# TO92S Package size



|        | Dimensions/mm |      |      |  |
|--------|---------------|------|------|--|
| Symbol | Min           | Тур  | Max  |  |
| А      | 2.9           | 3    | 3.1  |  |
| b      | 0.35          | 0.39 | 0.4  |  |
| b1     |               | 0.44 |      |  |
| с      | 0.36          | 0.38 | 0.4  |  |
| D      | 4             | 4.1  | 4.2  |  |
| E      | 1.42          | 1.52 | 1.62 |  |
| E1     |               | 0.75 |      |  |
| е      |               | 1.27 |      |  |
| e1     |               | 1.27 |      |  |
| L      |               | 2.54 |      |  |
| L1     | 13.5          | 14.5 | 15.5 |  |
| θ1     |               | 6°   |      |  |
| θ2     |               | 3°   |      |  |
| θ3     |               | 45°  |      |  |
| θ4     |               | 3°   |      |  |
| h      |               | 3.6  |      |  |

## SOT23-3L Package size



| Symbol | Size (MM) |      | Symbol Size (M |       | Size | (Inch) |
|--------|-----------|------|----------------|-------|------|--------|
|        | Min       | Max  | Min            | Мах   |      |        |
| А      | 1.05      | 1.25 | 0.041          | 0.049 |      |        |
| A1     | 0         | 0.1  | 0              | 0.004 |      |        |
| A2     | 1.05      | 1.15 | 0.041          | 0.045 |      |        |
| b      | 0.3       | 0.5  | 0.012          | 0.02  |      |        |
| с      | 0. 100    | 0.2  | 0.004          | 0.008 |      |        |
| D      | 2.82      | 3.02 | 0.111          | 0.119 |      |        |
| E      | 1.5       | 1.7  | 0.059          | 0.067 |      |        |
| E1     | 2.65      | 2.95 | 0.104          | 0.116 |      |        |
| е      | 0.950 TYP |      | 0.037 TYP      |       |      |        |
| e1     | 1.8       | 2    | 0.071          | 0.079 |      |        |
| L      | 0.3       | 0.6  | 0.012          | 0.024 |      |        |
| x      | 1.460 TYP |      | 0.057 TYP      |       |      |        |
| у      | 0.800 TYP |      | 0.032 TYP      |       |      |        |
| z      | 0.600 TYP |      | 0.024 TYP      |       |      |        |
| θ      | 0°        | 8°   | 0°             | 8°    |      |        |



## Precautions

1. Hall sensors are sensitive devices. Electrostatic protection measures should be taken during use and storage.

2 Mechanical stress applied to the device housing and leads should be minimized during installation and use.

3. It is recommended that the welding temperature should not exceed 350  $^\circ\!C$  and the duration should not exceed in 5 seconds.

4. In order to ensure the safety and stability of the Hall chip, it is not recommended to use it for a long time beyond the parameters.